
Learning of Network Structure from Neuronal Spike
Train Data

Muhong Gao, Chunming Zhang

Department of Statistics
University of Wisconsin-Madison

Gao and Zhang Learning of network structure Sep 4, 2020 1 / 7



Neural network in brain

Figure 1: Illustration of neural network in brain

Gao and Zhang Learning of network structure Sep 4, 2020 2 / 7



Neural spike train data

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

no
de

 1

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

no
de

 2

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

no
de

 3

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

no
de

 4

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

time(s)

no
de

 5

Figure 5: Samples generated from a random network with
V = 5 and maximum number of parents is 2

parents πmax for every node. Now, our efficient sam-
pling technique given in Sec. 3 is used to generate sam-
ples from the network. Samples generated from a ran-
domly generated network with V = 5 and πmax = 2 is
as shown in Fig. 5. The time window duration φ was
fixed to 1 second.

Parameter estimation and structure learning
The Laplace and variational approximation developed
in Sec. 4.1 and Sec. 4.2 are tested using samples gen-
erated from random graph structures. We observed
that the posterior distribution p(wi|T,M) can be
approximated very well by a multivariate Gaussian.
Thus, both approximations methods perform very ac-
curately. Fig. 6 shows the parameter estimation and
structure learning results obtained using variational
approximations for a 15 node network with maximum
number of parents restricted to 2. The results indicate
that the few edges that were missed by the structure
learning algorithm (circles) correspond to weak depen-
dencies i.e., edges with weights close to zero. The re-
sults of the Laplace approximation is similar to the
variational approximation except that the variational
approximation had higher confidence in its estimate.

Approximate Inference of rates The approxi-
mate inference techniques developed in Sec. 5 was
tested on a random graph having 10 nodes. Samples
were generated from the network using our sampling
technique. Nodes were chosen at random and marked
as observed, hidden and as query nodes. The inference
task was to estimate rates for all the nodes marked
as query nodes. The samples generated for the ob-
served nodes were made use of to perform inference

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

True weights

E
st

im
at

ed
 w

ei
gh

ts

Parameter Estimation results using variational approximation

Figure 6: Results for parameter estimation and structure
learning using the variational approximation for a network
with 15 nodes in which maximum number of parents is 2.
Each node i with a parent j has a true expected weight
wi,j (x-axis) and a posterior estimate (y-axis) shown as a
5%-95% posterior quantile interval with a mark indicating
the mean. The empty circles indicate the edges that were
not identified by the structure learning algorithm.

of rates using the sampling based approximation and
the fixed point approximation. The results shown in
Fig. 7 shows that the fixed point approximation tech-
nique (which is significantly faster than the sampling
based approximation) closely tracks the true rate.

7 Conclusions and Discussion

Poisson networks are models of structured multivariate
point processes and have the potential to be applied
in many fields. They are designed such that sampling
and approximate learning and inference are tractable
using the approaches described above. In particular,
structure learning is carried out in a principled yet
efficient Bayesian framework.

Future applications of the Poisson network model in-
clude biological problems such as analysing multiple
neural spike train data Brown et al. [2004] as well as
application in computer science such as prediction of
file access patterns, network failure analysis and queu-
ing networks.

A promising direction for future research is to combine
Poisson networks with continuous time Bayesian net-
works in order to be able to model both event counts
and state (transitions). For example, consider file ac-
cess events and the running states of CPU processes.
Clearly, they exhibit an interesting relationship the
discovery of which would it possible to predict and

=⇒

inference problem that is encountered in a Bayesian
network is one where data is available for some nodes
(denoted by MD), there are a few query nodes (de-
noted by MQ) whose behavior has to be estimated
from the data and the remaining nodes are hidden
nodes (denoted by MH for which no data is available.
We pose an analogous problem for Poisson networks.
The rate of any arbitrary node can be computed if the
time series data for all its parents are known for the pe-
riod of interest. However, certain configurations of the
problem involving hidden nodes are not easy to solve
because of the problem of entanglement as mentioned
in Nodelman et al. [2002]. The standard procedure
in a Bayesian network is to marginalise over all the
hidden nodes and obtain an estimation for the query
nodes using the data in observed nodes. Marginalis-
ing over a hidden node amounts to integrating over
all possible time series for a particular node which,
in general, is impossible. Hence, approximations are
necessary.

5.1 Inference by Sampling

A straightforward way to solve the inference problem is
to perform marignalisation of the hidden nodes by us-
ing a few instantiations of them which can be obtained
by sampling from the network. The samples can then
be used to obtain averaged rate estimates at each of
the query nodes. The sampling procedure is the same
as our procedure in Sec. 3 with a minor modification
that the sampling is to be performed conditioned on
the data that has been observed in the data nodes
MD. We observe that if the data for a node i is com-
pletely known, then the parent nodes of i do not have
any influence on i in the subsequent sampling process.
Hence, we can safely remove all the parental relation-
ships for all the fully observed nodes and obtain a new
network M ′ = M − {i → j, i ∈ MD, j ∈ π(i)}. Sam-
pling is done from the new network M ′ for all the
unobserved nodes and then average firing rates can be
obtained for all the query nodes.

5.2 Estimation of Steady State Rate

An alternative way to solve the inference problem is to
approximate the empirical rate λ̂ with a steady state
rate. According to our model, the rate of a node can
be written as,

λi(t) = exp


wi,0 +

V∑

j=1

(
wi,j ln

(
1 + λ̂i,j(t)

))

 . (3)

We notice that this is (1) if we consider wi,j = 0 for
all the pairs of nodes which are not dependent. The
empirical rate λ̂i,j(t) cannot be obtained unless the

21

543

Figure 4: The random Poisson network graph that gen-
erated the samples in Fig. 5. Red arrow indicates an in-
hibitory influence and the blue arrow indicates an excita-
tory influence.

whole time series is observed. Hence, we approximate
the empirical rate by the true rate,

λ̂i,j(t) =
ni,j(t)

φ
≈ 1

φ

∫ t

t−φ

λj(t̃)dt̃ ≈ λj(t) ,

where we assume that the length of time window, φ,
is very small. Substituting back in (3) we obtain

ln(λi(t)) ≈ wi,0 +

V∑

j=1

wi,j ln (1 + λj(t)) . (4)

We make the assumption that the rate is constant in
the time interval [t−φ, t] and hence the Poisson process
of each of the parents j, j ∈ {1, . . . , V } is assumed
to be a homogeneous Poisson process with rate λj(t).
Now, (4) can be constructed for all nodes that are
not observed and the set of equations have the form
λ(t) = F (λ(t)), F : RV → RV , whose solution are
the fixed points of the system. We perform fixed point
iterations starting from randomly initialized values for
λi(t), i ∈ {1 . . . V }. In experiments we observe that
at convergence, the estimated rate corresponds to the
mean rate in the time interval [t−φ, t] calculated from
actual data.

6 Experimental Results

In this section, we test the presented methods on data
sampled using the algorithms from Sec. 3. We show
experiments of approximate inference of rate using a
sampling based approximation and a fixed point ap-
proximation.

Sampling Firstly, we generate a random graph (see
Fig. 4) with V nodes. As mentioned before, because of
computational issues we fix the maximum number of

Figure 2: Stem plot of neural spike train data (left) and underlying neural network
(right).

Goal: to recover the underlying network structure from the observations
of spike train data.

Gao and Zhang Learning of network structure Sep 4, 2020 3 / 7



Model-based approach

Node set (neural ensemble)

V = {1,2, . . . ,V}

Point process (spike train data)

T i = (Ti,1, . . . ,Ti,Ni ), i ∈ V

Counting process (spike counts)

Ni (t) =

Ni∑

`=1

I(0 ≤ Ti,` ≤ t)

Intensity process (firing rate)

λi (t) = lim
∆t↓0

1
∆t

P{Ni (t + ∆t ) = Ni (t) + 1 | Ft}

Gao and Zhang Learning of network structure Sep 4, 2020 4 / 7



Modeling λi(t)

Proposed continuous-time GLM model

λi (t) = exp
{
β0;i +

∑

j∈V\i
βj,i xj (t)

}
, i ∈ V, t ∈ [0,T ].

βj,i : connection strength parameter.

βj,i > 0 : excitatory effect from node j on node i ;
βj,i = 0 : no effect from node j on node i ;
βj,i < 0 : inhibitory effect from node j on node i .

Gao and Zhang Learning of network structure Sep 4, 2020 5 / 7



Parameter estimation

λi (t) = exp
{
β0;i +

∑

j∈V\i
βj,i xj (t)

}
:= exp

{
β̃
ᵀ
i · x̃ i (t)

}
.

Proposed penalized M-estimator ̂̃βi

̂̃
βi = arg min

β̃i∈RV

{
Li(β̃i) + P(β̃i)

}
.

Loss function: negative log-likelihood function (Ozaki 1979)

Li (β̃i ) = − 1
T

[∫ T

0
log{λi (t)}dNi (t)− λi (t)dt

]
.

Estimated network:

Excitatory effects Ê+ = {(j , i) : β̂j,i > 0}
Inhibitory effects Ê− = {(j , i) : β̂j,i < 0}

Gao and Zhang Learning of network structure Sep 4, 2020 6 / 7



Real data experiment
Data: the prefrontal cortex spike train dataset “pfc-6” (of 55 neurons) on
CRCNS.

Estimation result:

1

2

3

4

56

7

8

9

10

11

12

13 14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32

33

34 35

36

37

38

39

4041

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Figure 3: Estimated network by our method. Red arrow is excitatory effect, Blue
arrow is inhibitory effect.

Gao and Zhang Learning of network structure Sep 4, 2020 7 / 7


